Indian Statistical Institute, Bangalore

B. Math (Hons.) Third Year Second Semester - Analysis IV

Back Paper Exam Maximum marks: 100

Date: June 13, 2018 Duration: 3 hours

Each question carries 10 marks

- 1. Let X be a compact metric space and $\mathcal{A} \subset C_{\mathbb{R}}(X)$ be a subalgebra that separates points of X and nowhere vanishes on X. Prove that \mathcal{A} is dense in $C_{\mathbb{R}}(X)$.
- 2. (a) Let $\Phi: C[0,1] \to C[0,1]$ be given by $\Phi(f)(x) = \int_0^x f(t)dt$. Prove that Φ is Lipschitz. Can Lipschitz constant of Φ be less than one? (Marks: 4).

(b) Let X be a complete metric space and $\phi: X \to X$ be a map such that $d(\phi^n(x), \phi^n(y)) \leq a_n d(x, y)$ for all $n \geq 1$ and all $x, y \in X$ for some sequence $a_n \to 0$. Prove that ϕ has a unique fixed point $x \in X$ and $\lim_{n \to \infty} \phi^n(y) = x$ for all $y \in X$.

- 3. (a) Prove that set of all invertible linear maps of \mathbb{R}^n is open. (b) Prove that $\sum_{1}^{\infty} \frac{\sin nx}{n} = \frac{\pi - x}{2}$ for $0 < x < \pi$ (Marks: 6).
- 4. (a) Let $f \in \mathcal{R}[-\pi,\pi]$ be a 2π -periodic function and c_n be the Fourier coefficients of f. Suppose $f \in C^1(\mathbb{R})$. Prove that $\sum |c_n| < \infty$ and Fourier series of fconverges uniformly.

(b) Find the Fourier series of 2π -periodic function f given by $f(x) = x(\pi - |x|)$ on $(-\pi, \pi)$ (Marks: 5).

5. (a) Let $f \in \mathcal{R}[a.b]$. Prove that $\lim_{r\to\infty} \int_a^b f(t) \sin(rt+s)dt = 0$ for any $s \in \mathbb{R}$. (b) Using Fourier series prove that $\sum_{k=1}^{\infty} \frac{1}{k^6} = \frac{\pi^6}{945}$ (Marks: 5).